EMIRATES HOPE MARS MISSION (EMM)

SCIENCE OVERVIEW

Presented by Sarah Amiri on behalf of the EMM Team

NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology
The Emirates Mars Mission is the first planetary exploration mission for the UAE, announced in 2014.

Hope Probe is developed through a partnership between Mohamed bin Rashid Space Centre (MBRSC), LASP at University of Colorado Boulder, and Arizona State University (ASU)

Due to launch July 2020
PROGRAM OBJECTIVES

- Develop science and engineering capabilities
- Data from the mission should be beneficial to the global science community
- Arrive at Mars by the 50th anniversary of the formation of the UAE.
SCIENCE OBJECTIVES

EMM is a mission focused on atmospheric dynamics. It will explore the atmosphere of Mars **globally** while sampling both **diurnal** and **seasonal** timescales.

<table>
<thead>
<tr>
<th>Science Questions</th>
<th>Science Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>How does the Martian lower atmosphere respond globally, diurnally and seasonally to solar forcing?</td>
<td>Characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability</td>
</tr>
<tr>
<td>How do conditions throughout the Martian atmosphere affect rates of atmospheric escape?</td>
<td>Correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere</td>
</tr>
<tr>
<td>How do key constituents in the Martian exosphere behave temporally and spatially?</td>
<td>Characterize the spatial structure and variability of key constituents in the Martian exosphere</td>
</tr>
</tbody>
</table>
EMM PARTNERSHIPS

Project Management & Development

Science

Spacecraft, Mission Operations, Observatory and Spacecraft I&T

Instruments

Navigation

Launch Vehicle
EMM PROJECT DEVELOPMENT TIMELINE

We are here

- 2015: Concept
- 2016: Preliminary Design
- 2017: Detailed Design
- 2018: Assembly & Test
- 2019: Preliminary Engineering Review (PER)
- 2020: Launch
- 2021: Mission Operations Initiation (MOI)
- 2022: Science Operations
- 2023: Extended Science Operations
- 2024:
MISSION TIMELINE

EMM

Timeline version 2017-01-20

<table>
<thead>
<tr>
<th>Year</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Events
- 14 July: Capture Orbit
- 9 Feb: Transition to Science Phase
- 13 March: Decommissioning

Mission Phase

- **Cruise**
- **Science**
- **Extended Mission**

Maneuvers
- TCM = Trajectory Correction Maneuver
- DOI = Mars Orbit Insertion
- TSM = Transition to Science Maneuver

High Cadence Science

Occultations

Eclipses

Solar Conjunction

Distance to Earth

Distance to Sun

Standard Tracks / wk

DDORs / wk

Data DL Vol (Gb/wk)

Angle of Sun out of Orbit

LST of Perilune

Solar Longitude L₅

Mars Seasons

(Northern Hemisphere)

Stopping Slit Geometry

Winter

Spring

Summer

Autumn

Winter

Spring

Dust Storm Season

<table>
<thead>
<tr>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMM INSTRUMENTS

EMIRS
Fourier Transform IR Spectrometer

EMUS
Ultra Violet Imaging Spectrometer

EXI
Imager with 12 MP camera with 6 bandpass filters (VIS/UV)
EMM Science Flow

Science Investigations

Determine the three-dimensional thermal state of the lower atmosphere and its diurnal variability, on sub-seasonal timescales

Determine the geographic and diurnal distribution of key constituents in the lower atmosphere on sub-seasonal timescales

Physical Parameters

Temperature Profiles <50 km

Surface Temperatures

H2O vapour column abundance

Dust column integrated optical depth 9 μm

Ice column integrated optical depth at 12 μm and 320 nm

Ozone column integrated abundance

Observable Quantity

Absolute radiance of CO2 absorption band (7-8 μm and 14-16 μm)

Absolute radiance over a subset of the spectral range (7 - 12 μm)

Relative radiance of H2O vapor absorption (25-40μm)

Relative radiance of dust absorption bands (8 -25 μm)

Relative radiance of H2O ice absorption bands (10-15 μm)

2D image of radiance in 320

2D image of radiance in 260

Instruments

EMIRS (IR)

EXI (VIS/UV)
EMM Science Flow

Science Investigations

Determine the abundance and spatial variability of key neutral species in the thermosphere on sub-seasonal timescales

Determine the three-dimensional structure and variability of key species in the exosphere and their variability on sub-seasonal timescales

Physical Parameters

Carbon Monoxide Column Density

Oxygen Column Density

Density of Hydrogen Corona

Density of Oxygen Corona

Observable Quantity

CO Emission (CO 4PG: 140–170 nm)

Light intensity image at O (130.4 nm & 135.6nm)

Light intensity at H (121.6 nm and 102.6 nm)

Altitude profiles at H emission (121.6 nm and 102.6 nm)

Light intensity at O (130.4 nm)

Altitude profiles at O emission (130.4nm)

Instruments

EMUS (FUV)
EMIRS

Instrument Description

EMIRS is the 5th generation ASU built FTIR spectrometer with OTES, Mini-TES (2x), MGS-TES and MO-TES heritage

- Simple, FTIR spectrometer w/ pointing mirror
- Acquires interferograms every 4 seconds
- Space and internal blackbody provide 1.5% absolute calibration
- Electronics compress and packetize science and housekeeping data

SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous Field of view</td>
<td>6 mrad</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>5 cm⁻¹ or 10 cm⁻¹</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>6-40+ µm</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td><300 km resolution</td>
</tr>
<tr>
<td>Observation Capability</td>
<td>Observe ½ of Mars within ½ hour of observing</td>
</tr>
<tr>
<td></td>
<td>~60 observations per week (~20/orbit)</td>
</tr>
</tbody>
</table>

MEASUREMENT REQUIRED

- Relative radiance of dust absorption bands
- Relative radiance of ice absorption bands
- Relative radiance of H_2O vapor absorption bands
- Absolute radiance of CO$_2$ absorption band
- Radiance at 1300 cm$^{-1}$

SCIENCE NEED

- To characterize dust.
- To characterize water ice clouds.
- To track the Martian water cycle.
- Track the thermal state of the Martian atmosphere.
- Boundary condition for the lower atmosphere.
EMUS

Instrument Description

- Far ultraviolet imaging spectrograph that will characterize the escape of hydrogen and oxygen from Mars and the state of the Mars Thermosphere.
- It consists of a single telescope mirror feeding a Rowland circle imaging spectrograph with a photon-counting and locating detector.
- The EMUS spatial resolution of less than 300km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude).

Instrument Specifications

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of view</td>
<td>(0.18°, 0.25°, 0.7°) × 11.0°</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>100 – 170 nm</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>1.3, 1.8, 5 nm</td>
</tr>
<tr>
<td>Spatial resolution with narrow slit</td>
<td>0.14° × 0.20°</td>
</tr>
<tr>
<td>Detector photocathode</td>
<td>CsI</td>
</tr>
</tbody>
</table>

Science Targets

TARGETS

- **H**: 102.6, 121.6 nm
- **O**: 130.4, 135.6 nm
- **CO 4PG**: 140-170 nm

FUV spectrum of Mars
(Feldman. Icarus 214.2 (2011): 394-399)
EXI

INSTRUMENT DESCRIPTION
- 12 Mpix CMOS imager with re-closeable door and filter wheel
- Filter band-pass targets
 - Blue: 437±5 nm CW, ≤20 nm FWHM
 - Green: 546±5 nm CW, ≤20 nm FWHM
 - Red: 635±5 nm CW, ≤20 nm FWHM
 - UV1: 260±5 nm CW, ≤30 nm FWHM
 - UV2: 320±5 nm CW, ≤30 nm FWHM

INSTRUMENT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>UV</th>
<th>VIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal Plane Format</td>
<td>12.6 MP 4:3 format 4096x3072 @5.5 um</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>CMOS</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>12-bit, 13,500 e full well</td>
<td></td>
</tr>
<tr>
<td>Lens System</td>
<td>48 mm, f/3.6</td>
<td>51 mm, f/4.25</td>
</tr>
<tr>
<td>Field of View</td>
<td>19.0°</td>
<td>25.8° by 19.2°</td>
</tr>
<tr>
<td>Pixel Angular View</td>
<td>23 arcsec per pixel</td>
<td>22 arcsec per pixel</td>
</tr>
<tr>
<td>Plate Scale</td>
<td>0.85 mm/°</td>
<td>0.9 mm/°</td>
</tr>
<tr>
<td>Distortion @9.35°</td>
<td>+6%</td>
<td>-2%</td>
</tr>
<tr>
<td>Ground coverage at apoapsis / priapsis</td>
<td>Full Disk</td>
<td></td>
</tr>
<tr>
<td>Ground resolution at apoapsis / priapsis</td>
<td>4.9 / 2.3 km per pixel</td>
<td>4.6 / 2.2 km per pixel</td>
</tr>
<tr>
<td>Filter Spectral Bands</td>
<td>UV1: 245-275 nm</td>
<td>UV2: 305-335 nm</td>
</tr>
<tr>
<td></td>
<td>Blue: 427-447 nm</td>
<td>Green: 536-556 nm</td>
</tr>
<tr>
<td></td>
<td>Red: 625-645 nm</td>
<td></td>
</tr>
</tbody>
</table>

SCIENCE TARGETS

<table>
<thead>
<tr>
<th>SCIENCE PRODUCT</th>
<th>SPATIAL RESOLUTION</th>
<th>IMAGE WAVELENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust Column-integrated optical Depth</td>
<td>≤ 10 km</td>
<td>635 nm</td>
</tr>
<tr>
<td>Water Ice cloud Column-integrated optical depth</td>
<td>≤ 10 km</td>
<td>320 nm</td>
</tr>
<tr>
<td>Ozone Column-integrated abundance</td>
<td>≤ 10 km</td>
<td>260 nm</td>
</tr>
<tr>
<td>Color images of Mars</td>
<td>≤ 10 km</td>
<td>437, 546, and 635 nm</td>
</tr>
</tbody>
</table>
INSTRUMENT PAYLOAD ON THE OBSERVATORY

- EMUS
- Star Tracker
- EMUS Electronics
- Launch Vehicle Adapter (LVA)
- EMIRS
- EXI Electronics
- Star Tracker
- EXI
- Reaction Wheel
EMM’S SCIENCE ORBIT

- **High altitude**: 20,000 km x 43,000 km altitude.
- Each observation covers the majority the Martian disk, providing substantial coverage of several local solar time ranges.

- **At periapse**, the orbit is ~synchronous with Mars’ motion. During this time, the spacecraft observes a large part of Mars at various lighting conditions.
- **At apoapse**, Mars rotates quickly beneath the observatory, giving EMM opportunities to survey the globe.

- **Period**: 2.25 sols.
 - From one periapse to the next, Mars rotates 360+360+90 deg. That last 90 deg is key. At each periapse, the spacecraft observes the next quadrant of Mars.
 - Every 4 orbits fills in a full map. 2.25 sols * 4 = 9 sols

- **Inclination**: 25 deg.
 - The orbit is inclined enough to see each pole

- **Argument of periapse**: ~180 deg. This balances the time we spend over each of Mars’ hemispheres.
Altitude_Mars (km): 33816
Altitude Mars (km): 30307

26 Apr 2021 02:57:45.032
Altitude_Mars (km): 26556

26 Apr 2021 05:40:22.466
Altitude_Mars (km): 23032

26 Apr 2021 08:22:05.261
Altitude Mars (km): 20540

26 Apr 2021 11:04:51.801
Altitude_Mars (km): 20116

26 Apr 2021 13:48:58.070
Altitude_Mars (km): 22027

26 Apr 2021 16:34:24.067
Altitude_Mars (km): 25420

26 Apr 2021 19:20:53.809
Altitude_Mars (km): 42987
Altitude_Mars (km): 42534

27 Apr 2021 19:46:10.461
Altitude_Mars (km): 41518

27 Apr 2021 22:20:36.265
Altitude_Mars (km): 39975

28 Apr 2021 00:52:18.525
Altitude_Mars (km): 37827

28 Apr 2021 03:28:35.466
Altitude_Mars (km): 35234

28 Apr 2021 05:59:45.388
Altitude_Mars (km): 32067

28 Apr 2021 08:36:27.605
Altitude_Mars (km): 28707

28 Apr 2021 11:05:56.798
Altitude_Mars (km): 25114

28 Apr 2021 13:42:00.172
Altitude Mars (km): 22132

28 Apr 2021 16:08:41.918
Altitude_Mars (km): 20180

Phobos

28 Apr 2021 18:48:16.414
Altitude_Mars (km): 20288

28 Apr 2021 21:15:26.222
Altitude_Mars (km): 22483

28 Apr 2021 23:58:27.752
DATA RELEASE POLICY

<table>
<thead>
<tr>
<th>Release Date</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug 2021</td>
<td>Quicklook plots from first month of mission; release earlier if possible. After initial release, will be released on a regular basis with a 2-week delay.</td>
</tr>
<tr>
<td>Sept 2021</td>
<td>Level 2 data products, February - April 2021 (MOI + 3 months)</td>
</tr>
<tr>
<td>Dec 2021</td>
<td>Level 2 data products, May - July 2021 Level 3 data products, February - April 2021</td>
</tr>
<tr>
<td>Mar 2022</td>
<td>Level 2 data products, August - October 2021 Level 3 data products, May - July 2021</td>
</tr>
<tr>
<td>Jun 2022</td>
<td>Level 2 data products, November 2021 - January 2022 Level 3 data products, August - October 2021</td>
</tr>
<tr>
<td></td>
<td>and so on through end of nominal mission, until all data is released.</td>
</tr>
<tr>
<td>Apr 2026</td>
<td>Final release of all products from mission, including any needed updates to earlier releases, and the radiometric tracking data from NAV.</td>
</tr>
</tbody>
</table>