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MARSDROP: Getting Miniature Instruments to the Surface of Mars as Secondary Payloads

Affordable microlander concept that could take instruments to difficult sites inaccessible to large landers and rovers 
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 Nearly all Mars missions fly with excess Cruise Stage mass

capabilities, often >>100 kg. MarsDrop mass on host mission, including

deployment hardware, is ~10 kg.

 Aerospace Corp. has successfully flown the Re-entry Breakup

Recorder (REBR) three times from Earth orbit down. MarsDrop would

use the identical aeroshell.

 The 9 km/sec Earth entry velocity creates much harsher conditions

than ~7 km/sec Mars direct-entry missions and 3.5 km/sec from

orbiters.
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 REBR’s small size (30 cm diameter) provides a low ballistic coefficient,

meaning that it decelerates to subsonic velocity several kilometers

above Mars’ surface.

Full-size and 

flight-weight 

MarsDrop Lander 

prototype (on 

table) and 

parawing (in 

hands) were 

dropped from 30 

km in deploy-ment

tests, 

demonstrating a 

key element of 
this concept.
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All components needed to comprise a functional lander are available today or soon, based on smallsat & CubeSat developments. 

Design life = 90 sols, but one Mars year possible.
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 Subsonic deployment would enable a simpler and lighter drag device

that has been tested at full scale 30 km above Earth.

 Parawing would descend at a 3:1 glide ratio at Earth and Mars. At

Mars, descent time is ~7-15 minutes; with ~7 m/sec vertical velocity at

touchdown.

 Total touchdown velocity ~20 m/sec; fully survivable by today’s

consumer electronics with crushable heat shield support structure.

Landing would be a shock/tumble/roll over 10’s of meters.

 But wait; there’s more… Precision Landing

 Sterilization could allow access to “special regions” where there may

be liquid water:

	

Rad-tested Gumstix/Pixhawk[tm]

 Precision landing capability could be

added after first “Science  Demonstration

Mission.”

Multiple scientific targets of interest, e.g.,

RSL’s, would be selected within landing

error ellipse, each ranked for science

value.

 After parawing deploys, a descent camera

would locate targets sites within range

+ control authority.  Onboard software

chooses best site, then terrain-relative nav

using scene-matching from historical

orbital imagery drives actuators on

parawing lanyards for left/right/descent

rate control.

 Subject to further study, we expect MarsDrop can be

assembled clean, then sterilized >111 C for  >24 hrs.

 Batteries are exception; can be sterilized by alternate

method, then inserted into heat-sterilized MarsDrop lander

during final assembly using sterile procedures.

 Fully-assembled MarsDrop would then be placed into

sterile shrink-wrap bio-barrier bag, and sealed for ground

handling and integration with host mission.

 Bio-barrier bag would burn off during Mars entry.

After entry vehicle, parawing, and other equipment, there would be enough mass, power & volume available for a moderately 

sophisticated instrument suite.  Strawman “Science Demonstration Mission” payload concept is ~300 g with camera, pressure, 

temperature and humidity sensors + tunable laser spectrometer sensitive to a few ppb CH4.

Survey:  Any of a variety of plausible instrumentation, 

serving a span of Science, can be accommodated

Other instrument selections possible, e.g., Digital Holographic 

Microscope.  What instruments would you want to fly?

Sites below -3.8 km MOLA initially achievable (see examples 

below).  Where would you want to go?

The Bottom Line*

Cost estimated to be 1 – 5 % that of primary (host) mission.

First unit “Science Demonstration Mission” estimated $20 – 30 M 

(including 35+% reserves, unreviewed), including deployment 

hardware. 

Subsequent flight units expected ~$10 M each. 

Where multiple identical units made for a single mission, copy cost 

estimated <<$10 M each, e.g., for network science.
*The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It

does not constitute a commitment on the part of JPL and/or Caltech.

Could your science investigation or instrument benefit 

from this architecture?  We’re happy to discuss:
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