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MAVEN Project Status

• Entered orbit 21 Sep 2014, completed commissioning on 15 Nov 2014

• Will complete 2 Mars years of science observations in Aug 2018

• Spacecraft and science instruments are performing nominally

• Planning for enhanced communications relay operations

– Currently supporting ~1 relay pass per week (split between MSL and MER-B)

– Relay support during InSight commissioning, ~1 pass per day

– Aerobrake into a lower-apoapsis orbit (~March – June, 2019)

– Raise periapsis to 200+ km to minimize drag and fuel use

– Anticipate doing 2-3 relay passes/day in the 2020 era

– Current fuel exhaustion date ~2030

• MAVEN can continue to operate as a combined science/relay orbiter
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Outline

• Loss of atmosphere to space during the “MAVEN Mars year”

• Effects of the largest solar event observed to date by MAVEN, on 10 

Sept 2017

• Implications of MAVEN results for evolution of habitability of 

exoplanets

• Upcoming observations/plans for EM-3 (through 30 Sep 2019)
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Loss To Space:  H Corona and H Escape
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• H in extended corona is produced from photodissociation of H2O in lower 

atmosphere, diffusion to corona; H in corona can escape

• Large seasonal variation due to atmospheric dust effects on temperature and 

vertical distribution of H2O in lower atmosphere

• Strong dependence of loss rate on dust and water content implies potential for 

significant interannual variability and dependence on obliquity
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Loss To Space:  Photochemical Loss Of O
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• Derived average loss rate ~ 1300 g O/sec, largest present-day loss process

• Loss is by dissociative recombination of O2
+ ions and electrons

• Derived loss shows strong geometry dependence (e.g., no O escape when 

ionosphere is minimal as observed at night)

• Mean loss rate would remove all of the present-day atmospheric O (mainly 

from CO2) in ~ 300 m.y.
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Loss To Space:  Enhanced Ion Loss Rates From 

Series Of Solar Events Observed By MAVEN

• Loss rate into all 4π directions cannot be determined for a single event from a 

single spacecraft

• Using multiple events, we can get a statistical indication of effects on total loss

• Figure compares loss rate at specific solar zenith angles from multiple solar 

events (circles) with average loss rate through year (histogram)

• Net effect is significant enhancement of loss due to solar events
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Exobase-homopause distance (km)
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• Diffusive separation by mass occurs above homopause, loss from exobase

preferentially removes lighter isotope; loss mechanism for Ar is sputtering

• 38Ar/36Ar ratio used because no process fractionates Ar isotopes other than 

sputtering loss to space

• Average fraction lost is 66 ± 4.5 %

• CO2 loss also occurs by sputtering, but also through additional loss processes

Loss To Space:  Using Argon Isotopes To Derive 

Integrated Loss Through Time
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Loss To Space:  Adding Up Loss Rates Over A 

Mars Year

• Total loss rate from Mars today:

– Total measured loss rate of ~ 2-3 kg/s

• At current loss rates:

– Mars would have lost H equivalent to a global equivalent layer of water 

between ~ 3.4 – 24 m thick in 4 billion years

– Mars would have lost O equivalent to either ~75 mbar  of CO2 or ~ 2.3 m 

of H2O in 4 billion years

• Loss rates have not been constant through time

– Loss rate greater early in history due to greater solar EUV flux, stronger 

solar wind, and more-abundant and more-intense solar storms

– Integrated loss of O through early Hesperian greater than 0.8 bar CO2

or 23 m H2O
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Solar Event of 10 Sept 2017:  Largest-To-Date 

Solar Event Observed By MAVEN

WSA-ENLIL model output showing event, based on observations from 

multiple spacecraft

Mars

Earth

Sun
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Solar Event of 10 Sept 2017: MAVEN 

Observations Of The Event

Key observations of the event 

(shown top to bottom):

• Flare

• Arrival of high-energy protons

• Arrival of energetic ions and 

electrons

• Increase in solar-wind dynamic 

ram pressure

• Compression of solar-wind 

magnetic-field lines

Draped

Open

Closed
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Solar Event of 10 Sept 2017: Solar Flare Effects 

On Thermospheric Temperature

CO2
+ Ultraviolet doubletEUVM B L0: 0-7 nm irradiance 

IUVS 

observations 

following flare

Observed 

flare

IUVS 

observations 

preceding flare
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Solar Event of 10 Sept 2017: Solar Energetic 

Particles Produced Global Aurora

Before: During:
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Solar Event of 10 Sept 2017: Enhanced 

Heavy-Ion Loss (1 of 2)

X X

Observations show an increase in loss, but are at a limited range of SZA, are at 

angles at which enhancement is small, and are not unambiguous.

X shows average 

outward flux during 

event
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Solar Event of 10 Sept 2017: Enhanced Heavy-

Ion Loss (2 of 2)

Heavy-ion loss into 4π derived from model that matches MAVEN observations:

20x increase in loss rate

• Measurements are at a limited range of SZA and do not capture full loss

• Use models that are validated against full range of MAVEN measurements to 

derive loss into all 4π directions

• Models show 3-20x increase in loss rate during this event

• May represent the major loss mechanism early in Mars history, when solar events 

were stronger and occurred much more often
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Exoplanet Habitability:  Mars Around An

M-Dwarf Star

Luminosity:

10-1000x fainter than Sun

EUV flux:

5-10x greater than Sun

Stellar wind:

~100x greater dynamic 

pressure than Sun

Stellar activity:

Active (young) M dwarfs have 

EUV flux 20-60x higher than 

inactive dwarfs, more-abundant 

solar storm events

Early EUV flux is greater on M Dwarfs, and stellar 

events can be much more common (courtesy K. 

France/CU LASP)

• M Dwarfs are the most abundant stars in the galaxy and appear to have 

abundant terrestrial planets in their Habitable Zones

• How long would a ~1/2 bar atmosphere persist if a Mars-like planet 

occupied the Habitable Zone of a range of M Dwarf stars?

• Use Mars because of its history of climate change
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Exoplanet Habitability:  Synthesis Of Loss From 

An M-Dwarf Mars

• Hydrodynamic blow-off: Requires Texo > ~50 Teff, only very early in history

• Ion loss:  Rates increase by roughly 3x

• Photochemical O loss: Increases by 5-10x

• Thermal H escape:  Unchanged or increases

• Sputtering loss:  Increases 5-10x

• Loss during extreme events:  Increases 103-104x

• Escape rates from each process should increase or remain 

unchanged relative to Mars in our solar system

• Timescale for habitability likely to be most-strongly influenced by 

extreme events

• Mars orbiting an M Dwarf is likely to be habitable for significantly 

shorter time than in our solar system – 0.01 - 0.1 b.y. versus 0.5 -

1.0 b.y.

• Significant implications for habitability and life in the galaxy
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Science Focus Through EM-3

In EM-3, we’ll focus on observations to address specific questions about the 

behavior of the Mars upper atmosphere:

• How does coupling between the lower atmosphere, the upper atmosphere, 

and the ionosphere affect escape to space?

• How do interactions between the solar wind and the crustal magnetic fields 

affect the upper atmosphere and escape to space?

• How does the approaching solar minimum affect interactions between the 

Sun and Mars, upper-atmospheric processes, and escape to space?

• Overarching question:  What are the implications for H escape, evolution of 

D/H, and the history of water?
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Observations to Address These Science 

Questions

• Observe behavior of upper atmosphere and driving processes during the 

important time period encompassed by EM-3 (Ls ~ 260 - 86o, dusty + wet 

season)

• Observe the entire upper atmosphere and crustal magnetic fields during a 

three-month-long deep-dip campaign (a.k.a. aerobraking) 

• Couple MAVEN observations to Trace Gas Orbiter, InSight, and ongoing 

Mars Reconnaissance Orbiter, Mars Express and MSL observations for 

more-complete characterization of atmosphere, magnetic field, and radiation 

environment

Observational goal is to observe Mars under as wide a range of driving 

conditions as possible, in order to:

• Determine the range of atmospheric responses at this epoch

• Understand processes controlling upper atmosphere and escape

• Constrain extrapolation to other epochs


