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The case for MAT

 Dust and water ice aerosols affect the “weather”:

 They are both radiatively active. 

 There is need for continuous and synoptic aerosol monitoring: 

 To understand the interaction between aerosols and circulation;

 To enable weather forecasting (e.g. evolution of dust storms);

 To support robotic AND future human exploration.

 A Mars-stationary (areostationary) orbit is ideal:

 To continuously/synoptically monitor the aerosol evolution; 

 To monitor changes in surface properties (e.g. albedo); 

 To observe a large, fixed region (~80° away from nadir);

 To monitor throughout the daily and seasonal cycles; 

 To provide high sampling rate (up to ½ hour). 2
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Why flying a CubeSat as an areostationary satellite?
 General reasons:

 A CubeSat is reasonably cheap;

 It can be built reasonably quickly;

 It enables a focused scientific mission;

 It allows to take more risks;

 There are more opportunities to launch…?

 Specific reasons:

 To pave the way for areostationary satellites at Mars; 

 To possibly enable flying multiple ones for complete coverage; 

 To demonstrate the potential of synoptic weather monitoring;

 To collect specific data to address the scientific questions:
What are the processes controlling the dynamics of dust and water ice clouds,        

and promoting the evolution of regional dust storms into planet-encircling storms? 5



The 12U CubeSat (24 kg) with electric propulsion

“Halo” 3rd Generation Prototype 
150 W, 5-10 mN, Isp 1100-1600 s

Solar Array Deployment (Left: rolled; Right deployed)
160 W/kg, 186 W at Mars at “End of Life” 6



Baseline Mission Design

 Journey to Mars: Rideshare on a primary Mars orbiter mission,    
deployment at ~310,000 km after initial capture burn. 

 Trajectory: Thrusters operated for 27 days to spiral down to ~20,000 km
 Orbit: Equatorial, circular, planet-synchronous (areostationary) with 

sub-spacecraft location fixed at one of the two stable longitudes.
 Total ΔV: 1.22 km/s (0.2 km/s reserved for orbit maintenance and 

lifetime operations, 0.3 km/s margin).
 Duration: 1 Martian year (primary mission) + possible extension 7



Planned payload

 Visible camera: Off-the-shelf camera 
( ECAM-C30 from MSSS): 
 Fixed-focus, narrow-angle lens; 
 2048 x 1536 pixels; 
 29° x 22° FOV (full disk and limb).

 Thermal infrared camera: ECAM-IR3A from MSSS:
 Fixed-focus, narrow-angle lens;
 Filter wheel for selecting multiple spectral ranges; 
 640 x 480 pixels; 
 Same field of view as visible camera;
 Detector responsive out to 20 μm.
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Planned products

 Images: High sampling rate (up to ½h). 
 Retrievals: Temperature and aerosols 

(dust, water ice) optical depth up to  
~60° from nadir :
 2D maps of τdust and τice ;
 3D maps of T ;
Maps and images are co-located 

and simultaneous.
 Note on T retrievals: 3 independent 

points, sensitivity up to 45-50 km.
 Data downlink: It may require:

 On-board storage/pre-processing;
 Design of observational campaigns;
 Automatic event detection.

 Data distribution: Public access.

Weighting functions for several 
spectral ranges on one side of the 

CO2 15 μm absorption band. 9



Anticipated key challenges for this concept
(minor to major)

 Data pre-processing: To develop advanced dust event detection 
techniques based on neural and/or citizen scientist networks; 

 Pointing accuracy: To quickly dissipate possible disturbances from 
moving parts and/or solar array vibrations;

 Heat dissipation: To keep all the packed components cool;

 Radiation: To have highly radiation-proof components and extend    
the CubeSat lifetime;

 Communication: To develop autonomous high-rate communication, 
e.g. using JPL KaPDA high gain antenna;

 Propulsion: To increase the number of mission opportunities, 
e.g. to perform orbit capture after release from ballistic trajectory;

 Opportunity: To build, test, and fly the first areostationary satellite!10



Thanks for your feedback !
lmontabone@spacesc ience.org
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Summary of the mission concept

 Spacecraft: 12U CubeSat orbiter; 24 kg; Electric propulsion (micro Hall thrusters, solid propellant).

 Payload: Visible and thermal infrared fixed-focus cameras (several filters for selecting IR spectral ranges).

 Journey to Mars: Rideshare on a primary orbiter mission; deployment after initial capture burn.

 Orbit: Areostationary (i.e. equatorial, circular, planet-synchronous orbit) at ~17,000 km above the equator. 

 Duration: 1 Martian year (primary mission).

Mission Overview

Science Objectives

 The onset, evolution and decay of large dust storms;

 The formation, evolution and dissipation of extended water ice clouds;

 The changes in surface properties (e.g. albedo) over the observed area.

 High-resolution (up to 4.5 km/pixel), visible images during daytime;

 2D maps of column aerosol optical depth, all local times;

 3D maps of atmospheric temperature, all local times;

 High sampling rate (up to ½ h) for extended periods over a large, fixed region of the planet.

Monitor:

Produce:
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