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MAVEN Objectives And Status 

Science Objectives: 
•  Understand the behavior of the upper atmosphere at the present 
•  Determine today’s rates of loss of atmospheric gas to space and 

processes controlling them 
•  Extrapolate to long-term behavior of loss to space 

MAVEN Status: 
•  In orbit since September 2014 
•  Spacecraft and instruments all operating nominally 
•  New observations implemented for current Extended Mission 
•  Fuel to last possibly as long as a decade 
•  Long-term implementation for relay support under discussion 
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Characterization of H Corona and H Escape 
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•  Observed by SWIA based on incoming solar-wind protons that “charge 
exchange” with neutral corona; determination of integrated H column in corona; 
also observed by IUVS 

•  Corona density controls escape rate 
•  Order-of-magnitude seasonal variation seen; likely results from dust-driven 

temperature changes that allow water to rise higher into atmosphere and supply 
H corona more easily 

•  Better characterization than variations seen by HST and Mars Express 
(J. Halekas, M. Chaffin) 

Ls 
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Discovery Of Long-Lived Metal-Ion Layer In The 
Ionosphere 
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•  Metal ions detected in ionosphere – originally discovered associated with 
Comet Siding Spring, but now detected continually throughout mission 

•  Observed in situ with NGIMS, remotely via scattered sunlight by IUVS 
•  Source is interplanetary dust from comets/asteroids 
•  May be important in driving chemical reactions and in dust providing cloud 

condensation nuclei, similar to on Earth 

NGIMS: IUVS: 

(J. Grebowsky, M. Crismani, N. Schneider) 
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NGIMS Measurement of Neutral and Ion Winds 

•  NGIMS yaws left/right during periapsis pass to derive winds, 
implemented on all orbits one day/month 

•  Measure both neutrals and ions, on consecutive days 
•  Results show both similarities to model circulation and 

differences, plus significant longitudinal variability 
•  First synoptic measurements of upper-atmospheric winds 

Neutral wind measurements to date plus representative 
MGITM circulation model 

Zonal wind (m/s) 
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(M. Benna et al.) 
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Discovery of Proton Aurora at Mars 
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•  Solar-wind protons can “charge exchange” with H in 
corona to become neutral, and penetrate at solar-
wind speeds 

•  Collision with molecules in upper atmosphere induces 
auroral emission from incoming H atoms 

•  Scattering seen in H Lyman alpha profiles occurred 
simultaneously with penetrating high-energy solar 
wind protons. 

(J. Deighan, N. Schneider) 
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MAVEN STATIC

Characterizing Low-Energy (Cold) Ion Outflow 

•  MHD simulation (right) shows magnetic-field lines that connect to planet at both 
ends (red) and that are open to space at one end (green) 

•  Electron measurements (center) uniquely identify open field lines connected to 
the day-side ionosphere 

•  Acceleration of ions up open field lines drives low-energy outflow loss to space 
•  New STATIC measurements of ion velocities in this cold-ion outflow (left) show 

substantial loss at velocities just above Mars escape velocity 
•  Previously uncharacterized, this loss could dominate O2

+ ion loss at present 
epoch 

Solar 
Wind 

(D.L. Mitchell, J. McFadden, C. Dong) 
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Integrated Hydrogen Loss 

•  H is lost by thermal (Jeans) escape 
from an extended corona surrounding 
Mars; H is derived from atmospheric 
H2O 

•  Loss of H equivalent to atmospheric 
column of H2O in 4 x 103 – 4.1 x 104 
years (using the extreme seasonal 
values of loss rates) 

•  At current rate, loss over 4 b.y. of ~2 - 
15 m H2O global equivalent layer 

•  Extrapolation difficult due to uncertain 
cause of present-day variability; there 
are reasons that loss could be greater 
or less than the 2-15 m estimate 
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Oxygen Ion Loss 

•  Ions are stripped away from the upper atmosphere by the solar wind 
•  Loss over mission shown here in two views – mapped and projected onto 

plane (with Sun at the right), both sorted by solar-wind magnetic field 
•  Mean loss rate would remove atmospheric O (mainly from CO2) in ~2 b.y. 
•  Modeled extrapolation into past based on greater EUV flux early in history 

that drives much greater loss 
•  Estimated loss as high as ~0.4 bar CO2 equivalent 

+ 
Subsolar 

+ 
Antisolar 
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Sputtering Loss of O 

•  Oxygen ions get picked up and accelerated by solar wind 
•  Those picked up upstream of Mars get accelerated into Mars’ upper 

atmosphere, and can physically knock other atoms and molecules out 
•  Loss at present epoch ~10x less than for O ion loss; not significant today 
•  Loss rate early in history as much as 104x greater 
•  Integrated loss of >0.6 bar CO2 equivalent 

Solar Wind 

Solar EUV photons 

“Precipitating” Pick-
up Ion 

Pick-up Ions 
Neutrals and ions in 
extended corona 

Sputtered 
atom 
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Loss During Solar Storm (Space Weather) 
Events 

•  Example solar event hitting Mars, with MAVEN measuring all pertinent 
parameters 

•  Escape enhanced by ~20x for this moderate event, shown both in data and 
in MHD models of loss 

•  Solar events likely to have been stronger and more abundant early in 
history, and storm-induced loss could dominated total loss 

Date (March 2015) 
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•  Jeans escape loss of H 
–  Loss of Global Equivalent Layer (GEL) of ~ 2 - 15 m H2O 
–  Could be substantially larger 

•  Solar-wind stripping of O 
–  Loss of O from multiple processes, equivalent to 

•  Up to a couple of bars of CO2, or 

•  2 - 40 m H2O, or 
•  A mix of these end-members 

•  Loss from solar storms 
–  Enhanced loss observed during solar events 
–  Storms early in history were stronger and much more abundant, and 

resulting loss could dominate total loss 

 

Summary Of Atmospheric Loss To Space 

Preliminary 

Results! 
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38Ar/36Ar Requires Substantial Loss 

•  Above homopause (~100 km), each gas has a scale height determined by its 
own mass; shown in upper left as profile of two gases having different masses 

•  Causes 36Ar/38Ar ratio to increase with altitude; loss from top of atmosphere 
preferentially removes 36Ar and leaves remaining gas enriched in 38Ar. 

•  We use this enrichment to quantitatively determine fraction of gas lost by 
sputtering alone 

•  Indicates directly that majority of atmosphere has been removed to space 

[36Ar/38Ar = 5.4]  

[36Ar/38Ar = 4.2]  

[36Ar/38Ar = 4.2]  
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[Earth 36Ar/38Ar = 5.3]  
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Integrated Results on Atmospheric Loss 

•  Loss to space would have been able to remove the largest part of a thick, 
early atmosphere 

•  O that is lost can have come from either CO2 or H2O 
•  Argon-isotope enrichment requires loss of the bulk of the atmosphere by 

sputtering but applies to all constituents; O loss has to include loss of CO2 

Bottom line:  Loss to space likely was a (if not the) major process for 
changing Mars from having an early warm, wet climate to the cold, dry 
climate we see today. 
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Ongoing and Upcoming Measurements 

•  Observations through a second Mars year (interannual variations) 
•  Different time in the 11-year solar cycle (effects of different solar drivers) 
•  Comprehensive measurements not previously made 
•  Coordinated observations with Trace Gas Orbiter 


