Planetary Science Division Status Report

Jim Green
NASA, Planetary Science Division
March 2, 2016

Presentation at MEPAG

NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.
Outline

• Mission Overview
• FY 2016 Appropriation
• FY 2017 President’s Budget
• Discovery & New Frontiers Programs
• New Cubesat Selections
Planetary Science Missions Events

2014
July – Mars 2020 Rover instrument selection announcement
August 6 – 2nd Year Anniversary of Curiosity Landing on Mars
September 21 – MAVEN inserted in Mars orbit
October 19 – Comet Siding Spring encountered Mars
September – Curiosity arrives at Mt. Sharp
November 12 – ESA’s Rosetta mission lands on Comet Churyumov–Gerasimenko
December 2/3 – Launch of Hayabusa-2 to asteroid 1999 JU3

2015
March 6 – Dawn inserted into orbit around dwarf planet Ceres
April 30 – MESSENGER spacecraft impacted Mercury
May 26 – Europa instrument Step 1 selection
July 14 – New Horizons flies through the Pluto system
September – Discovery 2014 Step 1 selection
December 6 – Akatsuki inserted into orbit around Venus

2016
March – Launch of ESA’s ExoMars Trace Gas Orbiter (Launch of NASA’s InSight postponed)
July 4 – Juno inserted in Jupiter orbit
September – Launch of Asteroid mission OSIRIS – REx to asteroid Bennu
September – Cassini begins plane change maneuver for the “Grand Finale”
Late 2016 – Discovery 2014 Step 2 selection
FY16 Appropriation supports a robust Planetary Science program

Planetary Science $270M above the request, at $1.63B

- $277M for Planetary Science Research
- $189M for Discovery (+$33M), including full funding for LRO
- $259M for New Frontiers
- $448M for Mars (+$36M), including full funding for Opportunity
- $197M for Technology (+$55M)
 - Includes $25M for icy satellites surface technology
- $261M for Outer Planets (+$145M) with direction
 - Directs that the Europa mission be launched on an SLS in 2022 and that a lander be included ($175M)
- Direction to continue to fund AIDA/DART joint study with ESA
- Direction to establish a new Ocean Worlds program with a primary goal to discover extant life on another world using a mix of Discovery, New Frontiers, and flagship class missions
President’s FY17 Budget
Planetary Science

- Continues development of the Mars 2020 mission.
- Funds continued formulation of a mission to Jupiter’s moon, Europa.
- Continues work on the JUICE instrument in collaboration with the European Space Agency mission to Jupiter.

- Initiates studies for the next New Frontiers Mission and continues operations of Juno and New Horizons.
- Operates 13 Planetary missions including MAVEN, Mars Curiosity, Opportunity, Odyssey, Mars Express, and Cassini (Saturn).
- Increases support for technology development to accelerate future power systems.
- Increases support for Research and Analysis.

<table>
<thead>
<tr>
<th>($M)</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planetary</td>
<td>1,631</td>
<td>1,519</td>
<td>1,440</td>
<td>1,520</td>
<td>1,576</td>
<td>1,626</td>
</tr>
</tbody>
</table>

Outyears are notional.
Discovery & New Frontiers
Discovery Program

Completed

- **Mars evolution:**
 - Mars Pathfinder (1996-1997)

- **Lunar formation:**

- **NEO characteristics:**
 - NEAR (1996-1999)

- **Solar wind sampling:**
 - Genesis (2001-2004)

- **Comet diversity:**
 - CONTOUR (2002)

- **Nature of dust/coma:**
 - Stardust (1999-2011)

- **Comet internal structure:**

- **Lunar Internal Structure:**
 - GRAIL (2011-2012)

Completed

- **Mercury environment:**

- **Main-belt asteroids:**
 - Dawn (2007-2016)

- **Lunar surface:**
 - LRO (2009-TBD)

- **ESA/Mercury Surface:**
 - Strofio (2017-TBD)

- **Mars Interior:**
 - InSight (TBD)
Status of Discovery Program

Discovery 2014 – Selections announced September 30
- About 3-year mission cadence for future opportunities

Missions in Development
- *InSight*: Missed March 2016 launch window
- *Strofio*: Delivered to SERENA Suite (ASI) for BepiColombo

Missions in Operation
- *Dawn*: Science observation now in Low Altitude Mapping Orbit

Missions in Extended Operations
- *LRO*: In stable elliptical orbit, passing low over the lunar south pole
Psyche: Journey to a Metal World
PI: Linda Elkins-Tanton, ASU
Deep-Space Optical Comm (DSOC)

NEOCam:
Near-Earth Object Camera
PI: Amy Mainzer, JPL
Deep-Space Optical Comm (DSOC)

VERITAS: Venus Emissivity, Radio Science, InSAR, Topography, And Spectroscopy
PI: Suzanne Smrekar, JPL
Deep-Space Optical Comm (DSOC)

Lucy: Surveying the Diversity of Trojan Asteroids
PI: Harold Levison, Southwest Research Institute (SwRI)
Advanced Solar Arrays

DAVINCI: Deep Atmosphere Venus Investigations of Noble gases, Chemistry, and Imaging
PI: Lori Glaze, GSFC
New Frontiers Program

1st NF mission
New Horizons:
Pluto-Kuiper Belt

Launched January 2006
Flyby July 14, 2015
PI: Alan Stern (SwRI-CO)

2nd NF mission
Juno:
Jupiter Polar Orbiter

Launched August 2011
Arrives July 4, 2016
PI: Scott Bolton (SwRI-TX)

3rd NF mission
OSIRIS-REx:
Asteroid Sample Return

Launch window: Sept. 8, 2016
PI: Dante Lauretta (UA)
Next New Frontiers Program AO

- Community Announcement Regarding New Frontiers Program January 2016
- Draft to be released by end of Fiscal Year 2016 (September)
- Investigations are limited to the following mission themes (listed without priority):
 - Comet Surface Sample Return
 - Lunar South Pole-Aitken Basin Sample Return
 - Ocean Worlds (Titan, Enceladus)
 - Saturn Probe
 - Trojan Tour and Rendezvous
 - Venus In Situ Explorer
Europa Mission
Science

<table>
<thead>
<tr>
<th>Objective</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice Shell & Ocean</td>
<td>Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange</td>
</tr>
<tr>
<td>Composition</td>
<td>Understand the habitability of Europa’s ocean through composition and chemistry.</td>
</tr>
<tr>
<td>Geology</td>
<td>Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities.</td>
</tr>
<tr>
<td>Recon</td>
<td>Characterize scientifically compelling sites, and hazards for a potential future landed mission to Europa</td>
</tr>
</tbody>
</table>

- Conduct 45 low altitude flybys with lowest 25 km (less than the ice crust) and a vast majority below 100 km to obtain global regional coverage
- Traded enormous amounts of fuel used to get into Europa orbit for shielding (lower total dose)
- Simpler operations strategy
- No need for real time down link

Lander Concept Studies Are Continuing
SIMPLEEx Cubesats Selections
 Full missions (2)
 and
 Approved for 1 year Tech Development (3)
Small Innovative Missions for Planetary Exploration (SIMPLEX-2014) – New Awards in FY15

Lunar Polar Hydrogen Mapper (LunaH-Map)
PI: Craig Hardgrove
ASU School of Earth and Space Exploration

CubeSat Particle Aggregation and Collision Experiment (Q-PACE)
PI: Josh Colwel
University of Central Florida
Simplex Cubesats

Approved for Tech Development (1 year) Study ONLY

Mars Micro Orbiter
PI: Michael Malin
Malin Space Science Systems

Diminutive Asteroid Visitor using Ion Drive (DAVID)
PI: Geoffrey Landis
NASA Glenn Research Center

Hydrogen Albedo Lunar Orbiter (HALO)
PI: Michael Collier,
NASA GSFC

A Lunar Cubesat Mission For EM-1 - SIMPLEX 2014
Questions?
New Frontiers 4

• Why was the Ocean Worlds mission theme added to NF4?
 1. NOSSE Report: As a strategic program NF should be “adaptable to new discoveries”
 2. Consistent with the V&V Planetary Decadal
 3. Strong science case for Enceladus and Titan
 4. Congressional FY16 Approps: Response is required

• Next Steps:
 – Present that decision and rationale to PSS for feedback (considering AG input)
 – Present that decision and rationale to CAPS for feedback – midterm charge will also address how to accommodate recent discoveries
 – Community can also comment via the draft AO process
Planetary Defense Coordination Office (PDCO)

Hosted by the Planetary Science Division PDCO is responsible for:

• Oversight of potentially hazardous objects (PHOs):
 – Ensure early detection
 – Characterize PHOs of size large enough to affect Earth’s surface
 – Provide warning of potential impact effects if not deflected or mitigated
 – Provide timely and accurate communications about PHOs and any potential impact

• Lead research into potential asteroid deflection and impact mitigation technologies and techniques

• Provide lead coordination role in U.S. Gov’t planning for response to an actual impact threat (e.g., planetary science and deep space mission expertise for Federal Emergency Response Team)