Follow this
link to skip to the main content
 
 
 
 
 
 
 
 
 


8. Effect of Dust on Surface Systems


2005: IVA-1A
2010: 3
Priority: Low

Investigation: Characterize the particulates that could be transported to hardware and infrastructure through the air (including both natural aeolian dust and other materials that could be raised from the martian regolith by ground operations), and that could affect engineering performance and in situ lifetime. Analytic fidelity sufficient to establish credible engineering simulation labs and/or performance prediction/design codes on Earth is required.


This image shows dust accumulated on the Spirit rover over 348 sols (Martian days). Image credit: NASA/JPL-Caltech
Mars has a very dusty and dry environment, and from past experience with lunar surface operations, it is nearly impossible to keep dust from settling on equipment and machinery. Wind blowing, astronauts walking, rover wheels spinning, and spacecraft landing/taking off would all contribute to kicking up and transporting dust. Due to the thin atmosphere and harsh environment, the dust on Mars would be more like the dust on the moon than on Earth (i.e. abrasive, sticky, and possibly electrostatic). To avoid potential damage to surface system, there are three main effects that must be studied: (1) the effects of dust on seals, (2) the effect of dust on electrical properties of the surface on which it collects, and (3) the corrosive chemical effects on different materials. This knowledge would help design systems to minimize the adverse effects of dust and increase system lifetime.

Click on the expanding links below to see the 2005 and 2010 versions of this investigation.

2005 Version of Investigation (old version)

2010 Version of Investigation (current version)

Between 2005 and 2010, the rovers that have been sent to Mars have provided scientists with substantial observations of the properties of Martian dust. Most of the information comes from the MECA payload on Phoenix (true microscope to determine physical properties, wet chemistry experiments, triboelectric experiments, and long-duration exposures). These findings have not been specifically analyzed with respect to their implications on human exploration of Mars, but the information is still significant to this investigation. Observations from the Mars Exploration Rovers (MER – Spirit and Opportunity) have also contributed data.

Below is a list of papers that report on these findings. Additional measurements of dust properties, accumulation rates, and effects on mechanical surface systems are still needed to understand the range of mission conditions. While the measurements obtained so far have been helpful, the necessary data would be best collected through sample return analysis.

  • Arvidson, R. E., R. G. Bonitz, M. L. Robinson, J. L. Carsten, R. A. Volpe, A. Trebi-Ollennu, M. T. Mellon, P. C. Chu, K. R. Davis, J. J. Wilson, A. S. Shaw, R. N. Greenberger, K. L. Siebach, T. C. Stein, S. C. Cull, W. Goetz, R. V. Morris, D. W. Ming, H. U. Keller, M. T. Lemmon, H. G. Sizemore, and M. Mehta (2009). “Results from the Mars Phoenix Lander Robotic Arm Experiment.” Journal of Geophysical Research, v. 114, E00E02, doi: 10.1029/JE003408.

  • Boynton, W. V., D. W. Ming, S. P. Kounaves, S. M. M. Young, R. E. Arvidson, M. H. Hecht, J. Hoffman, P. B. Niles, D. K. Hamara, R. C. Quinn, P. H. Smith, B. Sutter, D. C. Catling, and R. V. Morris (2009). “Evidence for Calcium Carbonate at the Mars Phoenix Landing Site.” Science, v. 325, p. 61-64.
  • Catling, D. C., M. W. Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark, M. H. Hecht, and S. Kounaves (2010). “Atmospheric origins of perchlorate on Mars and in the Atacama.” Journal of Geophysical Research, v. 115, E00E11, doi: 10.1029/2009JE003425.

  • Chevrier, Vincent F., Jennifer Hanley, and Travis S. Altheide (2009). “Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars.” Geophysical Research Letters, v. 36, L10202, doi: 10.1029/2009GL037497.
  • Drube, L., K. Leer, W. Goetz, H.P. Gunnlaugsson, M.P. Haspang, N. Lauritsen, M.B. Madsen, L.K.D. Sørensen, M.D. Ellehoj, M.T. Lemmon, R.V. Morris, D. Blaney, R.O. Reynolds, and P.H.Smith (2009). “Magnetic and Optical Properties of Airborne Dust and Settling Rates of Dust at the Phoenix Landing Site.” Journal of Geophysical Research, v. 114, doi: 10.1029/2009JE003419.

  • Ellehoj, M. D., H. P. Gunnlaugsson, P. A. Taylor, H. Kahanpää, K. M. Bean, B. A. Cantor, B. T. Gheynani, L. Drube, D. Fisher, A.‐M. Harri, C. Holstein‐Rathlou, M. T. Lemmon, M. B. Madsen, M. C. Malin, J. Polkko, P. H. Smith, L. K. Tamppari, W. Weng, and J. Whiteway (2009). “Convective vortices and dust devils at the Phoenix Mars mission landing site.” Journal of Geophysical Research, v. 115, E00E16, doi: 10.1029/2009JE003413.
  • Fisher, David, A. Michael H. Hecht, Samuel P. Kounaves, and David C. Catling (2010). “A perchlorate brine lubricated deformable bed facilitating flow of the north polar cap of Mars: Possible mechanism for water table recharging.” Journal of Geophysical Research, v. 115, E00E012, doi: 10.1029/2009JE003405.

  • Goetz, W., W. T. Pike, S.F. Hviid, M.B. Madsen, R.V. Morris, M.H. Hecht, U. Staufer, K. Leer, H. Sykulska, E. Hemmig, J. Marshall, J.M. Morookian, D. Parrat, S. Vijendran, B.J. Bos, M.R. El Maarry, H.U. Keller, R. Kramm, W.J. Markiewicz, L. Drube, D. Blaney, R.E. Arvidson, J.F. Bell III, R. Reynolds, P.H. Smith, P. Woida, R. Woida, and R. Tanner (2009). “Microscopic Structure of Soils at the Phoenix Landing Site, Mars: Classification and Description of their Optical and Magnetic Properties”. Journal of Geophysical Research, v. 114.
  • Grant, J. A., R. Arvidson, J. F. Bell III, N. A. Cabrol, M. H. Carr, P. Christensen, L. Crumpler, D. J. Des Marais, B. L. Ehlmann, J. Farmer, M. Golombek, F. D. Grant, R. Greeley, K. Herkenhoff, R. Li, H. Y. McSween, D. W. Ming, J. Moersch, J. W. Rice Jr., S. Ruff, L. Richter, S. Squyres, R. Sullivan, and C. Weitz (2004). “Surficial Deposits at Gusev Crater along Spirit Rover Traverses.” Science, v. 305, p. 807-810.

  • Hamilton, Victoria E., Richard V. Morris, John E. Gruener, and Stanley A. Mertzman (2008). “Visible , near-infrared, and middle infrared spectroscopy of altered basaltic tephras: Special signatures of phyllosilicates, sulfates, and other aqueous alteration products with application to the mineralogy of the Columbia Hills of Gusev Crater, Mars.” Journal of Geophysical Research, v. 113, E12S43, doi: 10.1029/2007JE003049.
  • Hecht, M. H., S. P. Kounaves, R. C. Quinn, S. J. West, S. M. M. Young, D. W. Ming, D. C. Catling, B. C. Clark, W. V. Boynton, J. Hoffman, L. P. DeFlores, K. Gospodinova, J. Kapit, and P. H. Smith (2009). “Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site.” Science, v. 325, p. 64-67.

  • Herkenhoff, Ken E., John Grotzinger, Andrew H. Knoll, Scott M. McLennan, Catherine Weitz, Aileen Yingst, Robert Anderson, Brent A. Archinal, Raymond E. Arvidson, Janet M. Barrett, Kris J. Becker, James F. Bell III, Charles Budney, Mary G. Chapman, Debbie Cook, Bethany Ehlmann, Brenda Franklin, Lisa R. Gaddis, Donna M. Galuszka, Patricia A. Garcia, Paul Geissler, Trent M. Hare, Elpitha Howington-Kraus, Jeffrey R. Johnson, Laszlo Keszthelyi, Randolph L. Kirk, Peter Lanagan, Ella Mae Lee, Craig Leff, Justin N. Maki, Kevin F. Mullins, Timothy J. Parker, Bonnie L. Redding, Mark R. Rosiek, Michael H. Sims, Laurence A. Soderblom, Nicole Spanovich, Richard Springer, Steve W. Squyres, Daniel Stolper, Robert M. Sucharski, Tracie Sucharski, Rob Sullivan, and James M. Torson (2008). “Surface processes recorded by rocks and soils on Meridiani Planum, Mars: Microscopic Imager observations during Opportunity's first three extended missions” Journal of Geophysical Research, v. 113, E12S32, doi: 10.1029/2008JE003100.
  • Kounaves, S. P., M. H. Hecht, J. Kapit, K. Gospodinova, L. DeFlores, R. C. Quinn, W. V. Boynton, B. C. Clark, D. C. Catling, P. Hredzak, D. W. Ming, Q. Moore, J. Shusterman, S. Stroble, S. J. West, and S. M. M. Young (2010). “Wet Chemistry Experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results.” Journal of Geophysical Research, v. 115, E00E10, doi: 10.1029/2009JE003424.

  • Kounaves, Samuel P., Michael H. Hecht, Jason Kapit, Richard C. Quinn, David C. Catling, Benton C. Clark, Douglas W. Ming, Kalina Gospodinova, Patricia Hredzak, Kyle McElhoney, and Jennifer Shusterman. “Soluble Sulfate in the martian soil at the Phoenix landing site.” Geophysical Research Letters.
  • McSween, H. Y. (2010). “Martian Rock and Soil Compositions from Orbit and the Ground: Why Can’t We All Just Get Along?” Presented at the 41st Lunar and Planetary Science Conference.

  • McSween, Jr., Harry Y., G. Jeffery Taylor, and Michael B. Wyatt (2009). “Elemental Composition of the Martian Crust.” Science, v. 324, p. 736-739.
  • Poulet, F., R. E. Arvidson, J.-P. Bibring, B. Gondet, D. Jouglet, Y. Langevin, and R. V. Morris (2010). “Mineralogy of the Phoenix landing site from OMEGA observations and how that relates to in situ Phoenix measurements.” Icarus, v. 205, p. 712-715.

  • Sabri, F., T. Werhner, J. Hoskins, A.C. Schuerger, A.M. Hobbs, J.A. Barreto, D. Britt, and R.A. Duran (2007). “Thin film surface treatments for lowering dust adhesion on Mars Rover calibration targets.” Advances in Space Research, v. 41, p. 118-128.
  • Shaw, Amy, Raymond E. Arvidson, Robert Bonitz, Joseph Carsten, H. U. Keller, Mark T. Lemmon, Michael T. Mellon, Matthew Robinson, and Ashitey Trebi-Ollennu (2009). “Phoenix soil physical properties investigation.” Journal of Geophysical Research, v. 114, E00E05, doi: 10.1029/2009JE003455.

  • Squyres, S. W., R. E. Arvidson, J. F. Bell III, J. Brückner, N. A. Cabrol, W. Calvin, M. H. Carr, P. R. Christensen, B. C. Clark, L. Crumpler, D. J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J. A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K. E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. H. Knoll, G. Landis, M. Lemmon, R. Li, M. B. Madsen, M. C. Malin, S. M. McLennan, H. Y. McSween, D. W. Ming, J. Moersch, R. V. Morris, T. Parker, J. W. Rice Jr., L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L. A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, and A. Yen (2004). “The Opportunity Rover’s Athena Science Investigation at Meridiani Planum, Mars.” Science, v. 306, p. 1698-1703.
  • Squyres, S. W., R. E. Arvidson, J. F. Bell III, J. Brückner, N. A. Cabrol, W. Calvin, M. H. Carr, P. R. Christensen, B. C. Clark, L. Crumpler, D. J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J. A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K. E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. H. Knoll, G. Landis, M. Lemmon, R. Li, M. B. Madsen, M. C. Malin, S. M. McLennan, H. Y. McSween, D. W. Ming, J. Moersch, R. V. Morris, T. Parker, J. W. Rice Jr., L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L. A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, and A. Yen (2004). “The Spirit Rover’s Athena Science Investigation at Gusev Crater, Mars.” Science, v. 305, p. 794-799.

  • Sullivan, et al. “Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater.” Journal of Geophysical Research, v. 113, E06S07.
  • Vaughan, A. F., J. R. Johnson, K. E. Herkenhoff, R. Sullivan, G. A. Landis (2010). “Pancam and Microscopic Imager Observations on Dust Movement and Morphology on the Spirit Rover.” Mars Journal.

  • Zent, Aaron P., Michael H. Hecht, Doug R. Cobos, Stephen E. Wood, Troy L. Hudson, Sarah M. Milkovich, Lauren P. DeFlores, and Michael T. Mellon (2010). “Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix.” Journal of Geophysical Research, v. 115, E00E14, doi: 10.1029/2009JE003420.
Sign-up for MEPAG E-Mail Contact Us http://www.hq.nasa.gov/mars http://mars.jpl.nasa.gov