Follow this
link to skip to the main content

3. In Situ Resource Utilization

2005: IVA-1D
2010: 2A
Priority: Medium

Investigation: Characterize potential sources of water to support In Situ Resource Utilization (ISRU) for eventual human missions.

Artist's concept of possible exploration programs. Image Credit: Created for NASA by Pat Rawlings
ISRU refers to finding and making use of local materials and resources for mission operations, in this case on Mars. Knowledge of this topic would allow for significant reductions in mass for travel to Mars as well as power and infrastructure on the Martian surface. Elements of interest are Carbon, Oxygen, and Hydrogen. There are already known processes that can be used to obtain Carbon and Oxygen from the CO2 in the Martian atmosphere. Hydrogen is necessary to produce propulsive fuel on Mars, and while there is evidence that it exists in three potentially useful forms, it is unclear if extracting it would be feasible or useful. We need to know how much mass, power, and equipment would be needed to produce these materials on Mars and how it compares to the resources required to ship them from Earth.

2005 Version of Investigation (old version)

2010 Version of Investigation (current version)

The measurements originally called for in the MEPAG Goals document were very detailed and only covered subsurface ice measurements. Since 2005, there have been new discoveries of hydrate minerals, methane gas, and transient fogs. The updated list of measurements consolidates the original measurements under the category “Subsurface Ice” and accounts for the new discoveries under “Hydrated Minerals” and “Atmospheric H-bearing Trace Gases”. It also includes requirements to produce planet-wide maps and in-situ measurements. These measurements are all about finding hydrogen and determining where/how to best extract it, and deciding if it’s potentially useful. The Space Resources Roundtable was instrumental in editing this portion of the document. Most of the following list of references can be found after Investigation 2A in the updated text and cover these findings.

  • Aharonson, O., and N. Schorghofer (2006). “Subsurface ice on Mars with rough topography.” Journal of Geophysical Research-Planets, v. 111, E11007, doi:10.1029/2005JE002636.

  • Bibring, J. P., Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthe, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, and O. Team (2005). “Mars surface diversity as revealed by the OMEGA/Mars Express observations.” Science, v. 307, p. 1576-1581.
  • Boynton, W. V., W. C. Feldman, S. W. Squyres, T. H. Prettyman, J. Bruckner, L. G. Evans, R. C. Reedy, R. Starr, J. R. Arnold, D. M. Drake, P. A. J. Englert, A. E. Metzger, I. Mitrofanov, J. I. Trombka, C. d'Uston, H. Wanke, O. Gasnault, D. K. Hamara, D. M. Janes, R. L. Marcialis, S. Maurice, I. Mikheeva, G. J. Taylor, R. Tokar, and C. Shinohara (2002). “Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits.” Science, v. 297, p. 81-85.

  • Byrne, S., C. M. Dundas, M. R. Kennedy, M. T. Mellon, A. S. McEwen, S. C. Cull, I. J. Daubar, D. E. Shean, K. D. Seelos, S. L. Murchie, B. A. Cantor, R. E. Arvidson, K. S. Edgett, A. Reufer, N. Thomas, T. N. Harrison, L. V. Posiolova, and F. P. Seelos (2009). “Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters.” Science, v. 325, p. 1674-1676.
  • Cull, S., R. E. Arvidson, M. Mellon, S. Wiseman, R. Clark, T. Titus, R. Morris, and P. McGuire (2009). “Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations.” Journal of Geophysical Research, v. 115, E00D16, doi: 10.1029/2009JE003340.

  • Cull, S., R. E. Arvidson, R. V. Morris, M. Wolff, M. T. Mellon, and M. T. Lemmon (2010). “Seasonal ice cycle at the Mars Phoenix landing site: 2. Postlanding CRISM and ground observations.” Journal of Geophysical Research, v. 115, E00E19, doi: 10.1029/2009JE003410.
  • Ehlmann, B. L., J. F. Mustard, G. A. Swayze, R. N. Clark, J. L. Bishop, F. Poulet, D. J. Des Marais, L. H. Roach, R. E. Milliken, J. J. Wray, O. Barnouin-Jha, and S. L. Murchie (2009). “Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geological context near Nili Fossae and implications for aqueous alteration.” Journal of Geophysical Research, v. 114, E00D08, doi: 10.1029/2009JE003339.
  • Fairen, Alberto G., Alfonso F. Davila, Luis Gago-Duport, Ricardo Amils, and Christopher P. McKay (2009). “Stability against freezing of aqueous solutions on early Mars.” Nature, vol. 459, p. 401-404.

  • Feldman, W. C., W. V. Boynton, R. L. Tokar, T. H. Prettyman, O. Gasnault, S. W. Squyres, R. C. Elphic, D. J. Lawrence, S. L. Lawson, S. Maurice, G. W. McKinney, K. R. Moore, and R. C. Reedy (2002). “Global distribution of neutrons from Mars: Results from Mars Odyssey.” Science, v. 297, p. 75-78.
  • Mitrofanov, I., D. Anfimov, A. Kozyrev, M. Litvak, A. Sanin, V. Tret'yakov, A. Krylov, V. Shvetsov, W. Boynton, C. Shinohara, D. Hamara, and R. S. Saunders (2002). “Maps of subsurface hydrogen from the high energy neutron detector, Mars Odyssey.” Science, v. 297, p. 78-81.

  • Mumma, M. J., G. L. Villanueva, R. E. Novak, T. Hewagama, B. P. Bonev, M. A. DiSanti, A. M. Mandell, and M. D. Smith (2009). “Strong Release of Methane on Mars in Northern Summer 2003.” Science, v. 323, p. 1041-1045.
  • Smith, P. H., L. K. Tamppari, R. E. Arvidson, D. Bass, D. Blaney, W. V. Boynton, A. Carswell, D. C. Catling, B. C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H. P. Gunnlaugsson, M. H. Hecht, V. Hipkin, J. Hoffman, S. F. Hviid, H. U. Keller, S. P. Kounaves, C. F. Lange, M. T. Lemmon, M. B. Madsen, W. J. Markiewicz, J. Marshall, C. P. Mckay, M. T. Mellon, D. W. Ming, R. V. Morris, W. T. Pike, N. Renno, U. Staufer, C. Stoker, P. Taylor, J. A. Whiteway, and A. P. Zent (2009). “H2O at the Phoenix Landing Site.” Science, v. 325, p. 58-61.

  • Thomas, N., C. J. Hansen, G. Portyankina, and P. S. Russel (2010). “HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: II. Surficial deposits and their origins.” Icarus, v. 205, p. 296-310.
  • Whiteway, J. A., L. Komguem, C. Dickinson, C. Cook, M. Illnicki, J. Seabrook, V. Popovici, T. J. Duck, R. Davy, P. A. Taylor, J. Pathak, D. Fisher, A. I. Carswell, M. Daly, V. Hipkin, A. P. Zent, M. H. Hecht, S. E. Wood, L. K. Tamppari, N. Renno, J. E. Moores, M. T. Lemmon, F. Daerden, and P. H. Smith (2009). “Mars Water-Ice Clouds and Precipitation.” Science, v. 325, p. 68-70.

  • Zasova, L., V. Formisiano, V. Moroz, D. Grassi, N. Ignatiev, M. Giuranna, G. Hansen, M. Blecka, A. Ekonomov, E. Lellouch, S. Fonti, A. Grigoriev, H. Hirsch, I. Khatuntsev, A. Mattana, A. Maturilli, B. Moshkin, D. Patsaev, G. Piccioni, M. Rataj, and B. Saggin (2005). “Water clouds and dust aerosols observations with PFS MEX at Mars.” Planetary and Space Science, v. 53, p. 1065-1077.
Sign-up for MEPAG E-Mail Contact Us