Potential Chloride Salt MSL Landing Sites

Phil Christensen

Mikki Osterloo, Vicky Hamilton, Josh Bandfield, Tim Glotch, Alice Baldridge, F. Scott Anderson, and Livio Tornabene
Examples of a spectrally unique material

THEMIS Multi-spectral IR images
Observed IR Spectral Character

- Virtually featureless slope downward toward long wavelengths in THEMIS spectral data
- TES spectra and ratio spectra show slope mixed with residual basaltic shape
- Source of slope?
 - No good mineral fit
 - Material with non-unit emissivity
Effect of non-unit emissivity component

- Current method for converting from radiance to emissivity assumes unit emissivity
- If material has <unit emissivity, a slope will be introduced
- Candidates:
 - Halogens \rightarrow Chlorides

\[
\begin{align*}
\epsilon_{\text{max}} &= 1.0 \\
\epsilon_{\text{max}} &= 0.95
\end{align*}
\]
Terra Sirenum (-39° S; 1300 m)
THEMIS/TES Chloride Salt Identification Sites

Osterloo et al., submitted
Sites at Elevation < 1 km
Site 2 (-31°S; 400m)
Sites at Elevation < 1 km
Sites at Elevation < 1 km

350° E
Site 1 (-11° S; -1400 m)
Site 9 (-12° S; -1000 m)

DCS 25 km
Site 12 (-6° S; -1200 m)
Candidate 1: Site 15 \((-18^\circ S; 250\, m)\)
Candidate 2: Site 10 (-13° S; -1200 m)
Relevance to MSL Objectives

- Habitability
 - Chloride concentrations would indicate significant water abundances
 - Occur in basins
 - Associated with channels and layered strata
 - In situ precipitated minerals within a sedimentary sequence

- Preservation (and access)
 - Chloride salts excellent for preserving organic material
 - Occur in eroded layers - exposed units
Summary

- New class of mineralogic sites
- Spectral evidence for chlorides in significant abundance
- Relatively common
- Morphologic evidence consistent with meters-thick chloride (halite?) stratigraphic layer
- Occur in Noachian cratered highlands
- Often occur in basins associated with channels and layered units
- Exhumed
- Propose further investigation of these sites before elimination
 - Need HiRISE and CRISM
Site 15