

Mars Exploration Program Strategic Planning

© 2021 California Institute of Technology. Government sponsorship acknowledged.

Joe C. Parrish
Manager, Mars Exploration Program
NASA Jet Propulsion Laboratory

MEPAG 12 VM

21 June 2021

Reminder of long-standing MEP objectives

Objectives

- Understand the potential for life elsewhere in the Universe
- Characterize the present and past climate and the processes of climate change
- Understand the geological processes affecting planetary interiors, crust, and surface
- Develop knowledge necessary for eventual Human Exploration

Mars Exploration Program Goals

Prepare for Human Exploration

Key Mars Discoveries: A Springboard to the Future

- Complex geological and climate history
- Diversity of ancient water-rich environments
- •Environments that have potential to preserve bio-signatures
- Cold, dry planet today still changing
- Widespread subsurface ice provides resources for exploration and potential special environments for life

- The goals of the Mars
 Exploration Program have
 been stable for two
 decades
- MEP guiding themes have evolved over that time, based on capabilities and discoveries
- Question today:
 How should we construct the next decade(s) of MEP?

Guiding Mars Exploration Program Themes

Past: "Follow the Water" Found evidence of water, past & present

Current: "Explore Habitability" Found evidence of habitable environment from past

Future: "Seek Signs of Life" Search for biosignatures and return samples

Key inputs to MEP strategic planning

- NASA strategic objectives
- SMD programmatic and budget priorities
- Guidance & priorities from Planetary Science Decadal Survey
- Findings from the Mars
 Architecture Strategy Working
 Group (MASWG)
- Community inputs (MEPAG)

MASWG Mission Arcs are great exemplars of potential directions for MEP mission/investigation strategy

#1: Diverse Ancient **Environments & Habitability**

#2: Subsurface Structure, Composition & Possible Life

#3: Ice—Geologically Recent Climate Change

#4: Atmospheric Processes and Climate Variability

NASA / JPL / U. Arizona / MRO HiRISE

Ehlmann & Edwards, 2014

NASA / JPL / ODY GRS-NS-HEND

NASA-ASI / JPL / MRO SHARAD

NASA / JPL / MRO CTX & HIRISE

NASA / JPL / MSSS / MRO MARCI

Lower-cost missions are one potential mechanism to address MASWG recommendations

- Smallsats and other novel spacecraft
- Innovative payload delivery approaches
- Partnerships
 - International
 - Commercial

NASA/JPL-Caltech-Arizona State University

21 June 2021 5

The Mars science community is an essential part of MEP strategy development

- Transformation of highlevel goals into missions and investigations
- Community efforts to refine strategy and answer key questions
- Advocacy

NASA/JPL

21 June 2021 6

Seeking your inputs

- Science investigations
- Mission concepts
- Enabling and enhancing technologies
- Community efforts (e.g., MEPAG, working groups, workshops)

NASA/GSFC

Credit: NASA/GSFC

21 June 2021

