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Next Steps in Mars Polar Science
Key issues in Mars Polar Science*

1. What is the mechanism of climate change on Mars? How has it 
shaped the planet, and how does it relate to climate change on Earth?
– Investigation: Determine what seasonal and interannual variability, geologic history, 

and record of climatic change is expressed in the stratigraphy of Planum Boreum and 
Planum Australe

2. How do the PLD evolve, and how are they affected by planetary-scale 
cycles of water, dust, and CO2?
– Investigation: Determine the mass & energy budgets of the PLD, residual caps, and 

seasonal caps, and what controls these budgets on seasonal and longer timescales.
– Investigation: Determine the physical characteristics of the polar layered deposits 

and residual caps. 
3. What is the global history of ice on Mars? Where is it sequestered 

outside the polar regions, and what disequilibrium processes allow it 
to persist there?
– Investigation: By comparing polar and non-polar ice, determine the relationship 

between the PLD and residual cap record and processes elsewhere on Mars.
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*Synthesized from Mars Polar Science Conference 2006, reviews by Fishbaugh (2008), Clifford 
(2005), Titus (2008), Byrne (2009)
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Spatial structure of NPLD stratigraphy
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A typical exposed section of NPLD topography indicating 
elevations (from MOLA). A study of 150 m of this column 
can be expected to transect diverse strata. A 50 m descent, 
while valuable, transects only a few strata and is not 
necessarily representative.

SHARAD profile (courtesy NASA/JPL/Caltech) of the major stratigraphy 
of the NPLD, indicating the lateral conformity (Phillips 2008).



Next Steps in Mars Polar Science

4

Orbital forcing and climate

• Geological evidence suggests 
dramatic changes in martian climate 
over 104-107 years.

• The major cause of these changes is 
believed to be orbital variations 
(Milanković cycles)

• Milanković cycles have not yet been 
shown to correlate with stratigraphy

(Levrard et al. 2004)

Orbital variations over 2.5 Myr 
(Laskar et al. 2004)
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Next Steps in Mars Polar Science
Suggested approach

• Ongoing orbital program is bearing fruit and will 
continue to do so

• On Earth, we learn about past climates from 
physical and chemical properties of polar ice cores. 
Mars PLD likely harbors an analogous record. � In 
situ investigation of PLD is needed.

• Energy and mass balance investigations call for 
long-lived surface platform on PLD

• Opportunistic investigations from in situ platform
– Extract a chronological record of biomarkers from the PLD.
– Monitor planet-wide seismic activity and measure the 
geothermal constant from a polar subsurface platform
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Next Steps in Mars Polar Science
Approach to Chemical and Physical properties of strata

• Exposed stratigraphy has been modified by current 
conditions, so subsurface access is needed. 

• Two approaches have been suggested:
– Deep thermal drilling from a stationary platform
– Shallow drilling at numerous sites from a rover traverse

• RPS probably required for drilling, certainly for 
meteorology monitoring*

• Deep drill is Scout or New Frontiers class mission
• From MSL experience Rover w/ RPS is likely flagship

* Full spacecraft sterilization may be required for RPS near ice
6



Next Steps in Mars Polar Science
Two popular drilling methods
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A 7 cm diameter thermal drill descends into the Greenland ice cap returning meltwater for analysis through an aerogel-insulated tether. 
In the final frame, the drill is 47 m below the surface (images from JPL). 
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Down-hole climate markers

• Isotopic climate markers (D/H, 18O/16O)
• Fine scale (annual?) stratigraphy
• Chemical (evaporitic, photochemical, or volcanic) markers

2 
cm

Video frame from 1200 m 
down an Antarctic borehole

D/H in martian atmosphere varies spatially 
and temporally (M. Mumma), and correlates 
with precipitable water column (D. Fisher)



Next Steps in Mars Polar Science
Goals of PLD subsurface investigation

• Explore several layers of the stratigraphy visible 
from orbit.

• Analyze D/H and 18O/16O  (depth resolution of ~1 
cm is feasible)

• Visually measure dust concentration and ice 
structure (depth resolution of <1 mm is feasible)

• Measure soluble chemical species (depth resolution 
of ~1 cm is feasible)

• Monitor seasonal polar weather
• Opportunistic: 

– Trace organics (amines, etc.)
– Geophysics probe (embed seismometer, heat flow sensors)
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Next Steps in Mars Polar Science
What to follow?
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